
CAM Tutorial

COMMUNITY EARTH SYSTEM MODEL (CESM)

SCAM Practical
Session Introduction

Andrew Gettelman, John Truesdale, Brian
Dobbins

CAM Tutorial

Goals

● Get up and running with SCAM
● Explain how SCAM is run

○ Same methods / steps as CESM
○ Secret: SCAM is actual SCESM

■ (a Single Column Earth System Model)
● Basic model output and visualization
● Start some exercises with SCAM

CAM Tutorial

What the
heck is this?

CAM Tutorial

Your Environment
Your Computer

Container: ‘Virtual Machine’

Link (‘Bind’)
container file
system to local

Jupyter Lab IDE webserver

Choose Method for
Control/Communication

bash shell

OR

CAM Tutorial

Software Stack

● Docker = Virtualization layer
● Docker Container = Virtual Machine

○ Linux
○ Full CESM2 with libraries, compilers, etc

■ Configured for SCAM, with input data

○ Python (visualization)
○ Jupyter Lab = Integrated Development

Environment (IDE)
■ Web server interface running in the container
■ GUI for controlling things

CAM Tutorial

Workflow
● One time: Install Docker, ‘Load’ Container
● Run container (virtual linux machine)

○ Bind ‘work’ to local directory
○ Suggest launching Jupyter Lab IDE

● In container, through Jupyter
○ Terminal: Run SCAM script: build, compile, run
○ Terminal: run python plotting script
○ Notebook: interactive visualization

● Exercises: change the model, re-run, look at output
● ‘Stop’ container (or just leave it running)

CAM Tutorial

Run SCAM...

● Get a terminal in Jupyter Lab
● Are you set up? (copy script to work directory)
● >./create_scam_iop

○ Off you go: build, compile run
● Result will be a new ‘case’

○ cases directory
○ Output file:

work/cases/tutorial.FSCAM.arm97/run/*.nc

CAM Tutorial

What does the SCAM script do?

● Paths: model code, ‘case’ and ‘run directories
● Set Case Name
● Location of ‘source mods’
● Run configuration (=settings), ‘compset’, IOP for SCAM
● Create case (create_newcase): sets up the case
● Changing case options: xmlchange

○ CAM_CONFIG options
● Setup case & Copy source mods.
● Namelist changes
● Build (compile) the model: case.build
● Run!

CAM Tutorial

create_scam6_iop walkthrough Part 1

#**
Run SCAM with a single IOP
Usage:
./create_scam6_iop <IOP> # where IOP name is from list below
- or -
./create_scam6_iop # IOP is specified in the script below
#**

#------------------
User sets options in this section

Full path of cesm source code and case (output) directories (see examples)

Case Name

Set location of user source mods (if any)
setenv usrsrc ${this_dir}/mods/$CASETITLE

Standard Run Settings
set COMPSET=FSCAM

Set Desired IOP
arm95 arm97 atex bomex cgilsS11 cgilsS12 cgilsS6 dycomsRF01 dycomsRF02
gateIII mpace rico sparticus togaII twp06

#------------------
create case

$CESMDIR/cime/scripts/create_newcase --compset $COMPSET --res $RES --compiler
$COMPILER --case $CASEDIR/$CASENAME --user-mods-dir ${MODSDIR}/${IOPNAME}
--run-unsupported --mach ncar-scam-container

Change case name every time you run : script adds compset and IOP to casename

If you change code, this guides where it will go.

This says run SCAM. ‘BHIST’ will give you a fully coupled CESM2!

This specifies locations, times, input files. SCAM
specific

This ‘sets up’ the model case. Note $COMPSET = SCAM
Also: ${IOPNAME} loads specific dates, times, etc.

CAM Tutorial

create_scam6_iop walkthrough Part 2

#------------------
XMLCHANGE OPTIONS HERE

Append to CAM configure options
./xmlchange --append CAM_CONFIG_OPTS=' '

#------------------
Setup Case
./case.setup

#------------------
source mods: copy them into case directory

/bin/cp -f ${usrsrc}/* SourceMods/src.cam/

#------------------
Add all user specific cam namelist changes here

cat >> user_nl_cam << EOF
 fincl1= 'CDNUMC', 'AQSNOW','ANSNOW','FREQSL','LS_FLXPRC'
EOF

#------------------
Build

./case.build

#------------------
Run

../bld/cesm.exe

Once the case is ‘set up’ with defaults (FSCAM) you can
change some things this way.

An example of changing the model: altering
CAM before compiling with ‘configure’

Set up cesm configuration options

If you change code, this copies it to where the
model can compile it

This is where you can modify the post-compile
run-time namelist. It controls output fields

Build & Compile code, make namelists

Run the model

CAM Tutorial

Suggested Workflow
● Make a create_scam6_iop script for each case
● New case name each time

○ IOP is added to case name in the script
● Option: copy the script each time you change

something and call it create_scam6_iop_{$CASE}
○ Then you remember what you did

● Also, script is set up to have multiple directories for
code modifications for each case in ./mods/$CASE

○ Important to track changes!
● Save cases with output for analysis in same location

(work/{$CASE}/run)
● Same workflow works for full CESM as well…
● Directory locations are different for full CESM

○ run directory is not under case directory

CAM Tutorial

Visualization with Jupyter
● Browser based Interactive Development Environment (IDE)

=Web server running in container
● Runs a terminal and ‘jupyter notebooks’ (python)
● Currently points to test data, change paths for new runs

Filesystem tree

Tabs for:
● Terminal window
● Python Notebooks
● Display images (PDF)
● Script editor

Tab shown: Jupyter
Notebook interactive
python visualization of 2
SCAM runs

Jupyter Menus

CAM Tutorial

How to modify CAM?
Four basic ways to modify SCAM runs.

Different changes require different methods

Goal is to show you all of them

1. Run Settings: Compset, IOP
2. CESM configuration changes

a. CAM Configuration options (compile time)
3. Namelist settings: Output, input & ‘parameters’
4. Modified Source Code

CAM Tutorial

Changing CAM
● Where you change something may not be logical
● Some things have to be done in order:

○ Configuration changes before model setup
○ Namelist changes before constructing namelists
○ Model code changes before compiling

● Careful with where to change things
○ Some parameters can be changed through the

namelist, others require code modifications
○ Some parameterizations can be switched in the

namelist, some cannot
● Sometimes thing break

○ You can modify something that is overwritten!
○ Configuration changes can have ‘knock on effects’

CAM Tutorial

Changing CAM: IOP
● Run a different location, time
● Different IOPs good for different questions

CAM Tutorial

Changing CAM: CESM Options

● CESM uses xml files to define configurations
● Includes fundamental cam configurations

Append to CAM configure options
./xmlchange --append CAM_CONFIG_OPTS=' -micropys mg1'

DEBUG
./xmlchange DEBUG='TRUE'

Use a different SST file (SST+4K)
./xmlchange SSTICE_DATA_FILENAME="/home/scam/work/sst_HadOIBl_bc_1x1_2000climoP4K_c180814.nc"

Warning, this is not in the v1.0 container: you will have to add the file

CAM Tutorial

Changing CAM: Namelist
Options
● Lots of control options here
● Complete List:

http://www.cesm.ucar.edu/models/cesm2/settings/current/cam_nml.html

● Most common: output ‘history’ fields

http://www.cesm.ucar.edu/models/cesm2/settings/current/cam_nml.html

CAM Tutorial

A word about Output

Discussion of history fields and SCAM output

List of CAM6 history fields in the user guide
section 7.6:
https://ncar.github.io/CAM/doc/build/html/users_guide/model-output.html#example-default-history-fields-and-master-field-lists

Master field list:
http://www.cesm.ucar.edu/models/cesm2/atmosphere/docs/ug6/hist_flds_f2000.html

https://ncar.github.io/CAM/doc/build/html/users_guide/model-output.html#example-default-history-fields-and-master-field-lists
http://www.cesm.ucar.edu/models/cesm2/atmosphere/docs/ug6/hist_flds_f2000.html

CAM Tutorial

CAM Model I/O: History Fields
• Standard output of the coupled model

• Allowable I/O is called a ‘history field’
• Possible fields vary by component set

• CAM
• Outputs a history file of fields determined by the Default Field List

• Plus user additions. Default is h0 = monthly mean
• Other history streams (h1-h9) are possible with different

frequency (there is a standard, h1 = daily, h2= 6-hrly, etc)
• Add fields in namelist namelist variable can add fields from the

master list to any hist file:
finclN = fields to include (in addition to defaults)

to file #(N-1), where N=1,10 (so fincl1=h0, fincl2=h1, etc)
eg. fincl1 = 'U850','U200'
adds zonal wind at 850 & 200 mb to the h0 file

CAM Tutorial

Code modifications

● Script has multiple directories for code modifications for each
case in ./mods/$CASE

○ Important to track changes!
● To change code, copy code from CESM code directories

(/opt/ncar/cesm2) into ./mods/$CASE
● CAM physics code:

>ls /opt/ncar/cesm2/components/cam/src/physics/cam

CAM Tutorial

Goals

● Play with SCAM using different methods
● Session #1 (now)

○ Basic modifications, different types
○ Basic visualization

● Session #2 (tomorrow)
○ Other parameterizations, combinations

● Session #3 (wed AM)
○ Design your own experiment (with help)
○ Report on what you learned

CAM Tutorial

Okay, let’s do some exercises

Set 1
1. Run
2. Visualize
3. Different case
4. Change Output fields
5. Namelists: switch parameterizations
6. Modify code
7. Namelist ‘tuning’ parameters

ftp://ftp.cgd.ucar.edu/archive/cam-tutorial/SCAM_Practicals.pdf

CAM Tutorial

Exercises

Set 2
1. Change physics with configure (MG1)
2. CLUBB Parameters (Optional)
3. Input data: SST forcing (Cloud Feedback)
4. MG2 parameters (optional)

CAM Tutorial

Exercises

Set 3
1. Increase CO2 (namelist)
2. Stop the Earth (code modification)
3. Aerosol Radiative Forcing (namelist)
4. Explore your own

CAM Tutorial

More about Output
History File Controls

• Time sample frequency
nhtfrq - how frequently to write data to each history file
If nhtfrq(i) > 0, frequency is specified as number of timesteps
If nhtfrq(i) < 0, frequency is specified as number of hours.
Only the first file series may be a monthly average [default], with nhtfrq(1) = 0

• Number of time samples per file
mfilt - the maximum number of times to output into each file

• Example
fincl2 = 'T:I','Q:I','U:I','V:I'
fincl3 = 'T','Q','U','V'
nhtfrq = 0,-24,-3
mfilt = 1,31,8
h1 file will have 31 timesamples (approx 1 month) of daily instantaneous fields T,Q,U,V
h2 file will have 8 timesamples (1 day) of 3 hourly averaged fields T,Q,U,V

CAM Tutorial

Other CAM History File Controls
User Guide (7. Model Output)
https://ncar.github.io/CAM/doc/build/html/users_guide/model-output.html?highlight=history#

Provides settings/links to control output in a general way/for specific purposes:

● empty_htapes - turn off all default output and only write out the
fields explicitly set via fincl settings

● history_*- ‘groups’ of variables. Add fields for specific purposes to
the default output.
● For the complete listing go to the namelist page and search for

namelist variables with the history_ prefix (i.e.
history_amwg, history_clubb, history_cosp, etc.)

● finclNlatlon = single point output (fincl1= '10e_15n')
○ Can also use this for regional output (fincl1='10e:20e_15n:20n')

See Namelist Variables for Full information:
http://www.cesm.ucar.edu/models/cesm2/settings/current/cam_nml.html

https://ncar.github.io/CAM/doc/build/html/users_guide/model-output.html?highlight=history#
http://www.cesm.ucar.edu/models/cesm2/settings/current/cam_nml.html
http://www.cesm.ucar.edu/models/cesm2/settings/current/cam_nml.html

CAM Tutorial

Advanced: Adding a variable for output

• This gets a little complicated.
• But you can output pretty much any array from CAM.
• Complication : fields in parameterizations need to be

passed out to model ‘interface’ layer
• Best is to find something similar and copy the method.

• Look in the *_intr.F90 modules….

1) [Fortran *_intr.F90] addfld: at model initialization,
‘registers’ the history field

2) [Fortran *_intr.F90] outfld: each model timestep, stores
values for output

3) [Namelist] finclN: output something during a run

