COMMUNITY EARTH SYSTEM MODEL (CESM)

Radiation

Andrew Gettelman & Andrew Conley

NCAR is sponsored by National Science Foundation

Outline

- 1. Radiative Transfer in the Atmosphere
- 2. Methods for solving radiative transfer
- 3. How CAM solves radiative transfer: RRTMG
- 4. Sub-grid variability for clouds (McICA)
- 5. The CAM Aerosol-Radiation Interface
- 6. Radiative Forcing

Is sponsored by Sence Foundation

What does Radiation Do?

- Climate: energy balance of the planet
 - Gases: basic state & Impacts of greenhouse gases
 - Radiative transfer of heat between climate system components (mostly atmosphere and surface).
 - Clouds and condensed species (Aerosols) have unique challenges
- Weather: surface and atmospheric heating
 - What energy hits the surface
 - Clouds mediate this

NCAR CAM Tutorial

Spectrum of Solar Radiation (Earth)

NCAR CAM Tutorial

Water IR Absorption

NCAR is sponsored by

NCAR CAM Tutorial

· JET Y

Cloud Radiative Effects in the Climate system

Two important properties of clouds: Clouds are White (SW), Clouds are Cold (LW)

Solar (cooling) & Infrared (heating)

Cloud Radiative Effects

IPCC 2013 (Boucher et al 2013) Fig 7.7

Aerosols

Clear sky in Beijing, July 2010, 17:00 LT looking west

Radiation Parameterization

Typical Parameterization:

- LW absorption/emission,
- SW scattering/absorption
- Cloud absorption and scattering (aerosols too).
- Plane-parallel. (3D much more expensive)
- Single-scattering approximation

Methods for Solving Radiative Transfer

Assumptions:

- Plane-parallel (single column)
- Single-scattering approximation

NCAR CAM Tutoria

Methods:

- Line-by-line
- Broadband
- Correlated-K

Methods: Line by Line

Typically 1000's of lines. Most accurate, but expensive (treat every line) Lines are partly 'empirical' (measured in lab, not theory)

NCAR is sponsored by

Attenuation Coefficient

NCAR CAM Tutorial

Methods: Broadband

Typically 10's of bands. Cost effective, but a big approximation Subject to significant errors

NCAR CAM Tutorial

Attenuation Coefficient

Methods: Correlated-K

Typically ~100 bands. Accurate and cost effective Group bands by Absorption/Attenuation....

Attenuation Coefficient

NCAR CAM Tutorial

RRTMG Methods: Overview

- Correlated-k distribution for treating gases (sets spectral discretization)
- SW Transport calculations using two-stream (aka delta-eddington) in the single-scattering approximation in the SW.
- LW: same approach: neglect LW scattering
 - 2x faster without LW scattering,
 - LW scattering is about a 1-2% correction
 - LW is basically a 1-stream method computed at a single quadrature angle to represent full hemispheric irradiance.

Basics: Heating Rates CGILSS11

NCAR CAM Tutoria

Aside: Tropical Tropopause

Near tropopause: Transition between net radiative cooling (H2O) and warming (O3).

Zero Rad Heating = base of the Tropical Tropopause Layer

Where condensation heating is no longer balancing radiative cooling

Aside: Tropical Tropopause

GETTELMAN ET AL.: TROPICAL TROPOPAUSE LAYER RADIATION BALANCE

Can break down the heating rates by gases

• LW: H2O most important. Note CO2 rad heating in lower strat

NCAR CAM Tutorial

• SW: H2O (smaller), O3 in stratosphere, CO2 all the way through

Cloud Overlap

- RRTMG methods on sub-columns that include gases and condensed species (clouds and aerosols)
- Pre-computation of optical properties for clouds and aerosols,
 - Depends on some parameters (e.g. effective radius for cloud drops, with more complicated parameters for ice and aerosols)
- Sub-columns to treat sub-grid variability in clouds
 - Cloud Overlap
 - Correlation of water vapor and condensed cloud
- Monte Carlo Independent Column Approximation (McICA)
 - Sample the subc-olmns for efficiency

NCAR CAM Tutorial

Cloud Overlap

McICA

Monte carlo Independent Column Approximation

- Sub-grid variability of clouds (cloud fraction) requires radiation to "guess" cloud overlap.
- Assume clouds maximally overlap if they are in neighboring levels
- Assume clouds randomly overlap if there is a vertical gap between clouds
- Construct independent columns that satisfy the cloud fraction and cloud overlap model
- Sample the independent columns when performing the radiative transfer computation in each of the 128 correlated-k bands
- [Each independent column is applied to a different "color" of light]
- Enough monte-carlo samples converge to full radiative transfer though collection of independent columns.

Aerosols and Radiation

- Aerosol optical properties (like clouds) have slow variation across the spectrum
- No subgrid fraction
- Strongest net flux effect is in solar
 - Scattering and absorption
- Small net flux effect in the longwave
- But: significant stratospheric LW heating
 - Volcanic eruptions / geoengineering

Aerosol-Radiation Interface

• RRTMG

- Radiative transfer,
- McICA,
- gas phase optics.
- Condensed phase optics (in-cloud and aerosol optics) are 'parameterizations' based on microphysical state and are computed externally to RRTMG.
- Optics are assumed to be function of band, but constant for each correlated-k band inside of each band
- Optics are based on microphysical state of clouds/aerosols

Optics Based on Microphysics

Ice clouds

- Morphology fixed: shape recipe based on mid latitude cirrus (Mitchell)
- Size distribution

Liquid clouds

• Fully consistent mie calculations with mu and lambda parameters from cloud drop size distribution

MAM aerosol

- 3, 4, or 7-bins of internally mixed aerosol
- number-weighted average of index of refraction of composition
- Log-normal size distribution with fixed width and varying radius
- Water-vapor uptake

BAM aerosol

- Externally mixed with single-chemical composition
- Lognormal distribution with fixed (dry) radius and width
- Water-vapor update based on relative humidity

Liquid Cloud/Aerosol Optics

NCAR CAM Tutorial

Ice Optics

CAM uses a specified habit mix appropriate for mid-latitude cirrus (-20 to -35°C)

Radiative Forcing

"Change in net top-of-atmosphere flux due to change in composition/emissions/optics/surface"

- Instantaneous Radiative Forcing (IRF)
 - Net Flux change due to a change in composition given a specific time-sample-sequence of atmospheric states.
- Radiative Forcing (RF)
 - Same as IRF, except the stratosphere temperature is allowed to relax under the assumption of fixed stratospheric dynamics (but heating changes)
- Effective Radiative Forcing (ERF)
 - Allow land and atmosphere to respond, but fix ocean temperatures
- ERF w/TS correction
 - Like ERF, but recompute TOA flux with surface temperatures adjusted back to original case for the flux computation

How to Calculate RF

- Difference of 2 runs (but climate noise)
- Alternative method:
 - Additional 'diagnostic' radiation call
 - Can remove one gas at a time
 - Can also remove aerosols
 - Yields an RF, Difference of two of these is ERF
- Examples follow
 - Exercise will show how this 'rad_diag' works (namelist parameter)
- Also: PORT (Parallel Off-Line Rad Transfer)
 - Method to calculate column radiation off line for a collection of columns (like the whole planet)
 - Good for RF calculations

Volcanic ERF

NCAR CAM Tutorial

Schmidt et al 2018

Anthropogenic Aerosol ERF

A) Clearsky SW Aerosol Kernel

B) Allsky SW Aerosol Kernel

Aerosol Kernel of Wm-2/AOD from CAM5 Present - Pre Industrial Simulations To get ERF multiply by dAOD

C) Clearsky LW Aerosol Kernel

D) Allsky LW Aerosol Kernel

Summary

- CAM Solves Rad Transfer using Correlated-k (RRTMG)
- Condensed phase optics vary by species
 - Liquid, Ice, Aerosols
 - Optics (tau) fed into radiation (Not part of RRTMG)
- Sub-grid variability for clouds (McICA)
- CAM Has Capabilities to manipulate the radiation code, e.g. Radiative Forcing